
Principles of Public Key Cryptography

Instead of using single symmetric key shared in advance by the parties for realization of symmetric
cryptography, asymmetric cryptography uses two mathematically related keys named as private key
and public key we denote by PrK and PuK respectively.
PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due
to the great importance of PrK secrecy for information security we labeled it in red color. PuK is a
non-secret personal key and it is known for every user of cryptosystem and therefore we labeled it by
green color. The loss of PrK causes a dramatic consequences comparable with those as losing
password or pin code. This means that cryptographic identity of the user is lost. Then, for example, if
user has no copy of PrK he get no access to his bank account. Moreover his cryptocurrencies are lost
forever. If PrK is got into the wrong hands, e.g. into adversary hands, then it reveals a way to
impersonate the user. Since user’s PuK is known for everybody then adversary knows his key pair
(PrK, Puk) and can forge his Digital Signature, decrypt messages, get access to the data available to
the user (bank account or cryptocurrency account) and etc.

Public Key Cryptography - PKC

Symmetric Cryptography --------------------- Asymmetric Cryptography
 Public Key Cryptography

Symmetric encryption
H-functions, Message digest
HMAC H-Message Authentication Code

Asymmetric encryption
E-signature - Public Key Infrastructure - PKI
E-money, Blockchain
E-voting
Digital Rights Management - DRM (Marlin)
Etc.

Cryptography:
Information confidentiality, integrity,
authenticity & person identification

Symmetric - Secret Key Encryption - Decryption

Open
Communication

Channel

111_007 ElGamal-Sig-Enc

 111_007 ElGamal-Sig-Enc Page 1

the user (bank account or cryptocurrency account) and etc.

PuK=F(PrK).

Let function relating key pair (PrK, Puk) be F. Then in most cases of our study (if not declared
opposite) this relation is expressed in the following way:

PP = (p, g).

In open cryptography according to Kerchoff principle function F must be known to all users of
cryptosystem while security is achieved by secrecy of cryptographic keys. To be more precise to
compute PuK using function F it must be defined using some parameters named as public parameters
we denote by PP and color in blue that should be defined at the first step of cryptosystem creation.
Since we will start from the cryptosystems based on discrete exponent function then these public
parameters are

Notice that relation represents very important cause and consequence relation we name as the direct
relation: when given PrK we compute PuK.

PrK=F-1(PuK).

Let us imagine that for given F we can find the inverse relation to compute PrK when PuK is given.
Abstractly this relation can be represented by the inverse function F-1. Then

In this case the secrecy of PrK is lost with all negative consequences above. To avoid these
undesirable consequences function F must be one-way function – OWF. In this case informally
OWF is defined in the following way:
1. The computation of its direct value PuK when PrK and F in are given is effective.
2. The computation of its inverse value PrK when PuK and F are given is infeasible, meaning that to
find F-1 is infeasible.
The one-wayness of F allow us to relate person with his/her PrK through the PuK. If F is 1-to-1,
then the pair (PrK, Puk) is unique. So PrK could be reckoned as a unique secret parameter
associated with certain person. This person can declare the possession or PrK by sharing his/her PuK

as his public parameter related with PrK and and at the same time not revealing PrK.
So, every user in asymmetric cryptography possesses key pair (PrK, PuK). Therefore, cryptosystems
based on asymmetric cryptography are named as Public Key CryptoSystems (PKCS).
We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob.
Everybody is having the corresponding key pair (PrKA, PuKA) and (PrKB, PuKB) and are
exchanging with their public keys using open communication channel as indicated in figure below.

Asymmetric - Public Key Cryptography

PrK and PuK are related
PuK = F(PrK)

F is one-way function
Having PuK it is infeasible to find

PrK = F-1(PuK)
F(x)=a is OWF, if:
1.It easy to compute a, when F and x are
given.
2.It is infeasible compute x when F and a
are given.
PrK = x <-- randi ==> PuK = a = gx mod p
Public Parameters PP = (p, g)

Threaths of insecure PrK generation

 111_007 ElGamal-Sig-Enc Page 2

1.Public Parameters generation PP = (p, g).

Generate strong prime number p: >> p=genstrongprime(28) % strong prime of 28 bit length
Find a generator g in Zp*= {1, 2, 3, …, p-1} using condition.
Strong prime p=2q+1, where q is prime, then g is a generator of ZP* iff
gq ≠ 1 mod p and g2≠ 1 mod p.

Declare Public Parameters to the network PP = (p, g); p= 268435019; g=2;
 2^28-1= 268,435,455
PrK = x <-- randi ==> PuK = a = gx mod p

ElGamal Cryptosystem

El-Gamal E-Signature

The ElGamal signature scheme is a digital signature scheme which is based on the difficulty of
computing discrete logarithms.
It was described by Taher ElGamal in 1984. The ElGamal signature algorithm is rarely used in practice.
A variant developed at NSA and known as the Digital Signature Algorithm is much more widely used.
The ElGamal signature scheme allows a third-party to confirm the authenticity of a message sent
over an insecure channel.
From <https://en.wikipedia.org/wiki/ElGamal_signature_scheme>

Asymmetric Encryption - Decryption
c=Enc(PuKA, m)
m=Dec(PrKA, c)

Asymmetric Signing - Verification

Sign(PrKA, h) = ϭ = (r, s)

V=Ver(PuKA, h, ϭ), V{True, False}  {1, 0}

Message m < p

h
h < p

m
m < p

>> 2^28-1
ans = 2.6844e+08
>> int64(2^28-1)
ans = 268435455

 111_007 ElGamal-Sig-Enc Page 3

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Taher_ElGamal
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/ElGamal_signature_scheme

Certicom

Signature creation for message M >> p.

Compute decimal h-value h=H(M); h<p.1.
Generate >> i =int64(randi(p-1)) % such that gcd(i,p-1)=1.2.
Compute i-1 mod (p-1). You can use the function3.
>> i_m1=mulinv(i, p-1);
Compute r=gi mod p.4.
Compute s=(h-xr)i-1 mod (p-1).5.

Signature on h-value h is ϭ = (r,s)6.

Sign(x,h) = ϭ = (r,s).

1.Signature creation
To sign any finite message M the signer performs the following steps using public parametres PP.

Compute h=H(M).•

Choose a random i such that 1 < i < p − 1 and gcd(i, p − 1) = 1.•
Compute i-1 mod (p-1): i-1 mod (p-1) exists if gcd(i, p − 1) = 1, i.e. i and p-1 are relatively prime.•
k-1 can be found using either Extended Euclidean algorithmt or Euler theorem or …..

>> i_m1=mulinv(i,p-1) % i-1mod (p-1) computation.

Compute r=gi mod p•

Compute s=(h-xr)i-1 mod (p-1) --> h=xr+is mod (p-1)•

Signature ϭ=(r,s)

>> p=int64(genstrongprime(28))

>> p= int64(268435019)
p = 268435019
>> g=2
g = 2

>> i=randi(p-1)
i = 1.1728e+08
>> i=int64(randi(p-1))
i = 47250243
>> gcd(i,p-1)
ans = 1
>> i_m1=mulinv(i,p-1)
i_m1 = 172715821
>> mod(i*i_m1,p-1)
ans = 1

m
m < p

 111_007 ElGamal-Sig-Enc Page 4

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Greatest_common_divisor

2.Signature Verification

Bob computes h=H(M).1.

A signature ϭ=(r,s) on message M is verified using Public Parameters PP=(p, g) and PuKA=a.

2. Bob verifies if 1<r<p-1 and 1<s<p-1.

3. Bob calculates V1=gh mod p and V2=arrs mod p, and verifies if V1=V2.
The verifier Bob accepts a signature if all conditions are satisfied during the signature creation
and rejects it otherwise.

3.Correctness
The algorithm is correct in the sense that a signature generated with the signing algorithm will
always be accepted by the verifier.
The signature generation implies

h=xr+is mod (p-1)
Hence Fermat's little theorem implies that all operations in the exponent are computed mod (p-1)

ghmod p=g(xr+is) mod (p-1)mod p = gxrgis = (gx)r(gi)s = arrs mod p

 V1 (a) (r) V2

 111_007 ElGamal-Sig-Enc Page 5

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

>> p= int64(268435019)
p = 268435019
>> g=2;
>> x =int64(randi(p-1))
x = 65770603
>> a=mod_exp(g,x,p)
a = 232311991
>> M='Hello Bob...'
M = Hello Bob...
>> h=hd28(M)
h = 150954921

>> i =int64(randi(p-1))
i = 201156232
>> gcd(i,p-1)
ans = 2
>> i =int64(randi(p-1))
i = 35395315
>> gcd(i,p-1)
ans = 1
>> i_m1=mulinv(i,p-1)
i_m1 = 192754179
>> mod(i*i_m1,p-1)
ans = 1

>> r=mod_exp(g,i,p)
r = 172536234
>> hmxr=mod(h-x*r,p-1)
hmxr = 20262153
>> s=mod(hmxr*i_m1,p-1)
s = 44575091

>> g_h=mod_exp(g,h,p)
g_h = 241198023
>> V1=g_h
V1 = 241198023

>> a_r=mod_exp(a,r,p)
a_r = 49998673
>> r_s=mod_exp(r,s,p)
r_s = 111993804
>> V2=mod(a_r*r_s,p)
V2 = 241198023

Asymmetric Encryption-Decryption: El-Gamal Encryption-Decryption

p=268435019; g=2;

Let message m~ needs to be encrypted, then it must be encoded in decimal number m: 1< m < p.
E.g. m = 111222. Then m mod p = m.

 111_007 ElGamal-Sig-Enc Page 6

D-x mod p computation using Fermat theorem:
If p is prime, then for any integer a holds ap-1 = 1 mod p.

 111_007 ElGamal-Sig-Enc Page 7

Necessity of probabilistic encryption.
Encrypting the same message with textbook RSA always yields the same ciphertext, and so we
actually obtain that any deterministic scheme must be insecure for multiple encryptions.
Tavern episode
Enigma

Authenticated Key Agreement Protocol using ElGamal Encryption and Signature.
Hybrid encryption for a large files combining asymmetric and symmetric encryption method.

Hybrid encryption. Let M be a large finite length file, e.g. of gigabytes length.
Then to encrypt this file using asymmetric encryption is extremely ineffective since we must split it into millions of
parts having 2048 bit length and encrypt every part separately.
The solution can be found by using asymmetric encryption together with symmetric encryption, say AES-128.
It is named as hybrid encryption method.
For this purpose the Key Agreement Protocol (KAP) using asymmetric encryption for the same symmetric secret
key k agreement must be realized and encryption of M realized by symmetric encryption method, say AES-128.

AKAP: Asym.Enc & Digital Sign.

 111_007 ElGamal-Sig-Enc Page 8

Till this place

 111_007 ElGamal-Sig-Enc Page 9

